Materials:
Four item inventories were used in this study in order to determine validity and reliability for the RichMind Mindfulness Scale (RMS) developed by the lead experimenter. Inclusion of the Mindfulness Attention/Awareness Scale (MAAS) served to determine whether or not convergent validity with the RMS could be established. Inclusion of the Proactive Coping Inventory (PCI) served to determine whether or not discriminant validity with the RMS could be established. The Self-Consciousness Scale (SCS) had been included in Brown & Ryan’s (2003) validation study of the MAAS, and the authors found no significant correlation between the two. Due to the nature of the items included on the SCS, however, we were somewhat suspect of this finding and predicted a small but significant negative correlation between the RMS and SCS. If the expected correlations were found, they would strengthen the experimenter’s hypothesis by indicating that the RMS (a) measures the mindfulness construct, (b) can be discriminated from other constructs, and (c) has essential measurement distinctions from the MAAS.

Participants:
• 70 undergraduate students from the University of Richmond completed four item inventories (RMS, MAAS, SCS, PCI) in exchange for either course credit or $5. Of the 79 cases, 75 were retained for analysis; 3 were removed due to missing data, and one due to data entry error.
• Female: N = 47 No meditation/yoga experience: N = 71
• Male: N = 32 Some meditation/yoga experience: N = 8
• Mean Age = 19.15 yrs
• Items were ranked using Likert scales between 4 and 6 points in range.
• Order and sequence effects were controlled for by varying the order of presentation as determined by a balanced Latin square.
• Values were entered in an SPSS data file. Corrections were made for items that required reverse scoring.

Next, Davidson teamed up with Jon Kabat-Zinn, who trained a group of office workers in mindfulness practice 3 hrs/wk for 8 weeks. The treatment group exhibited significant increases in activity in the left-sided anterior temporal region compared to brain scans performed before training began. In addition, 4 months after training ended the treatment group reported decreases in negative task affect, stress, and anxiety, while also reporting increased energy and engagement in their work. In both cases, the control group showed no significant changes. Davidson tested the same subjects for immune function in response to a flu vaccine. Not only did meditation group have a larger immune response than non-meditators, but those who showed the highest levels of left-dorsal brain activity also showed the largest boost in immune response.

Results of other mindfulness research have been equally remarkable:
- Kabat-Zinn found that mindfulness training significantly reduced distress and suffering due to chronic pain (1982), moderated anxiety in sufferers of anxiety disorders (Kabat-Zinn, et al., 1992), and increased the rate of skin clearing in sufferers of moderate to severe psoriasis (Kabat-Zinn, et al., 1998).
- Paul Ekman found that trained monks were capable of unprecedented rates of cognitive processing when presented with a series of facial expressions, flashed on a screen for just 1/1000 of a second. As a group, they outperformed previous top performing groups, which include Secret Service agents and psychiatrists. Ekman even found that one monk was able to suppress the “startle reflex,” and involuntary behavior that was thought by mon to be unprescribable.

The significance of these findings could be substantial. Still, mindfulness research is in its infancy, and in fact has neglected a few important areas. To date, Brown & Ryan (2003) has been the only published study that has tested for mindfulness in non-meditators. I contend that lay persons in fact can be varied to degrees, and that improvements can be made upon both Brown & Ryan’s study, particularly in regard to their measure. Their scale, the Mindfulness Attention/Awareness Scale (MAAS) purports that the construct of mindfulness can be accurately measured using a single-factor model (at right) I propose, however, that the operational definition resulting from this single-factor focus is not comprehensive enough to define the construct, and as such have proposed our own 3-factor model (at right), the RichMind Mindfulness Scale.

Brown & Ryan tested the MAAS against 58 other non-mindfulness scales, and it was shown to be significantly correlated with 52 of the 56 scales, leading one to believe that it does not necessarily measure the unique construct of mindfulness. My goal, then, was to develop a scale that more accurately measures mindfulness in non-meditators, and has appropriate levels of convergent and discriminant validity.

The Development and Validation of the RichMind Mindfulness Scale
Daniel Goldman and Jane Berry
University of Richmond

"We don’t see things as they are, we see things as we are." - Anais Nin

Social, cognitive, and clinical psychology all address the aforementioned phenomena. At the core of this inaccuracy is the seemingly inherent tendency of humans to let schemas, biases, or other cognitive frameworks obstruct their ability to observe objectively.

Mindfulness refers to one’s level of ability to be receptively aware of and give undivided attention, without judgment or purpose, to thoughts, sensations, and feelings as they arise in the present moment, without ignoring, dismissing, discouraging, or clinging to them. Mindful ability is the cognitive capability of all disciplines of Bodhicitta meditation (e.g., Vipassana, or translated as mindfulness or insight meditation). Vipassana is not a religious dogma or rite, but simply a measured process of observing the actions of the mind so that one may gradually gain control over them and retain the mind to interpret cognitive and affective experiences in ways that promote higher functioning. The practice of mindfulness meditation trains individuals to focus objectively on one’s bare experiences, not on thoughts about item, and engenders an awareness with which one can protect oneself against being hamstrung by distorted or destructive cognitions and emotions.

Recent research using fMRI, EEG, and EOG suggests that mindfulness meditation generates a prominent increase in activity in the brain’s left prefrontal cortex, an area that is associated with positive emotion, calmness, and recovery from negative events. Dr. Richard Davidson has extensively studied this area, and has documented heightened activity in the left region at levels previously unseen in his brain imaging research. Davidson’s results suggest that the mind, in response to adequate training, can experience positive neuroplasticity. Mindfulness practice, in particular, may confer an enduring change in cognitive and attentional capacities by strengthening left prefrontal cortex neurons, thus imprinting neutral memories from the amygdala that lead to distressing emotions.